Metamath Proof Explorer


Theorem sbcori

Description: Distribution of class substitution over disjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019)

Ref Expression
Hypotheses sbcori.1 [˙A/x]˙φχ
sbcori.2 [˙A/x]˙ψη
Assertion sbcori [˙A/x]˙φψχη

Proof

Step Hyp Ref Expression
1 sbcori.1 [˙A/x]˙φχ
2 sbcori.2 [˙A/x]˙ψη
3 sbcor [˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ
4 1 2 orbi12i [˙A/x]˙φ[˙A/x]˙ψχη
5 3 4 bitri [˙A/x]˙φψχη