Metamath Proof Explorer
		
		
		
		Description:  Distribution of class substitution over disjunction, in inference form.
       (Contributed by Giovanni Mascellani, 27-May-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | sbcori.1 | ⊢ ( [ 𝐴  /  𝑥 ] 𝜑  ↔  𝜒 ) | 
					
						|  |  | sbcori.2 | ⊢ ( [ 𝐴  /  𝑥 ] 𝜓  ↔  𝜂 ) | 
				
					|  | Assertion | sbcori | ⊢  ( [ 𝐴  /  𝑥 ] ( 𝜑  ∨  𝜓 )  ↔  ( 𝜒  ∨  𝜂 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcori.1 | ⊢ ( [ 𝐴  /  𝑥 ] 𝜑  ↔  𝜒 ) | 
						
							| 2 |  | sbcori.2 | ⊢ ( [ 𝐴  /  𝑥 ] 𝜓  ↔  𝜂 ) | 
						
							| 3 |  | sbcor | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝜑  ∨  𝜓 )  ↔  ( [ 𝐴  /  𝑥 ] 𝜑  ∨  [ 𝐴  /  𝑥 ] 𝜓 ) ) | 
						
							| 4 | 1 2 | orbi12i | ⊢ ( ( [ 𝐴  /  𝑥 ] 𝜑  ∨  [ 𝐴  /  𝑥 ] 𝜓 )  ↔  ( 𝜒  ∨  𝜂 ) ) | 
						
							| 5 | 3 4 | bitri | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝜑  ∨  𝜓 )  ↔  ( 𝜒  ∨  𝜂 ) ) |