Metamath Proof Explorer


Theorem sbcimi

Description: Distribution of class substitution over implication, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019)

Ref Expression
Hypotheses sbcimi.1 𝐴 ∈ V
sbcimi.2 ( [ 𝐴 / 𝑥 ] 𝜑𝜒 )
sbcimi.3 ( [ 𝐴 / 𝑥 ] 𝜓𝜂 )
Assertion sbcimi ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( 𝜒𝜂 ) )

Proof

Step Hyp Ref Expression
1 sbcimi.1 𝐴 ∈ V
2 sbcimi.2 ( [ 𝐴 / 𝑥 ] 𝜑𝜒 )
3 sbcimi.3 ( [ 𝐴 / 𝑥 ] 𝜓𝜂 )
4 sbcimg ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ) )
5 1 4 ax-mp ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) )
6 2 3 imbi12i ( ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ↔ ( 𝜒𝜂 ) )
7 5 6 bitri ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( 𝜒𝜂 ) )