Metamath Proof Explorer


Theorem sbcimi

Description: Distribution of class substitution over implication, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019)

Ref Expression
Hypotheses sbcimi.1
|- A e. _V
sbcimi.2
|- ( [. A / x ]. ph <-> ch )
sbcimi.3
|- ( [. A / x ]. ps <-> et )
Assertion sbcimi
|- ( [. A / x ]. ( ph -> ps ) <-> ( ch -> et ) )

Proof

Step Hyp Ref Expression
1 sbcimi.1
 |-  A e. _V
2 sbcimi.2
 |-  ( [. A / x ]. ph <-> ch )
3 sbcimi.3
 |-  ( [. A / x ]. ps <-> et )
4 sbcimg
 |-  ( A e. _V -> ( [. A / x ]. ( ph -> ps ) <-> ( [. A / x ]. ph -> [. A / x ]. ps ) ) )
5 1 4 ax-mp
 |-  ( [. A / x ]. ( ph -> ps ) <-> ( [. A / x ]. ph -> [. A / x ]. ps ) )
6 2 3 imbi12i
 |-  ( ( [. A / x ]. ph -> [. A / x ]. ps ) <-> ( ch -> et ) )
7 5 6 bitri
 |-  ( [. A / x ]. ( ph -> ps ) <-> ( ch -> et ) )