Metamath Proof Explorer


Theorem sbeqalb

Description: Theorem *14.121 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 28-Jun-2011) (Proof shortened by Wolf Lammen, 9-May-2013)

Ref Expression
Assertion sbeqalb AVxφx=Axφx=BA=B

Proof

Step Hyp Ref Expression
1 bibi1 φx=Aφx=Bx=Ax=B
2 1 biimpa φx=Aφx=Bx=Ax=B
3 2 biimpd φx=Aφx=Bx=Ax=B
4 3 alanimi xφx=Axφx=Bxx=Ax=B
5 sbceqal AVxx=Ax=BA=B
6 4 5 syl5 AVxφx=Axφx=BA=B