Metamath Proof Explorer


Theorem sbievw2

Description: sbievw applied twice, avoiding a DV condition on x , y . Based on proofs by Wolf Lammen. (Contributed by Steven Nguyen, 29-Jul-2023)

Ref Expression
Hypotheses sbievw2.1 x=wφχ
sbievw2.2 w=yχψ
Assertion sbievw2 yxφψ

Proof

Step Hyp Ref Expression
1 sbievw2.1 x=wφχ
2 sbievw2.2 w=yχψ
3 sbcom3vv ywwxφywyxφ
4 1 sbievw wxφχ
5 4 sbbii ywwxφywχ
6 sbv ywyxφyxφ
7 3 5 6 3bitr3i ywχyxφ
8 2 sbievw ywχψ
9 7 8 bitr3i yxφψ