Metamath Proof Explorer


Theorem sblbis

Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993)

Ref Expression
Hypothesis sblbis.1 yxφψ
Assertion sblbis yxχφyxχψ

Proof

Step Hyp Ref Expression
1 sblbis.1 yxφψ
2 sbbi yxχφyxχyxφ
3 1 bibi2i yxχyxφyxχψ
4 2 3 bitri yxχφyxχψ