Metamath Proof Explorer


Theorem sdom0

Description: The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion sdom0 ¬ A

Proof

Step Hyp Ref Expression
1 dom0 A A =
2 en0 A A =
3 1 2 sylbb2 A A
4 iman A A ¬ A ¬ A
5 3 4 mpbi ¬ A ¬ A
6 brsdom A A ¬ A
7 5 6 mtbir ¬ A