Metamath Proof Explorer


Theorem sdom0

Description: The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion sdom0 ¬A

Proof

Step Hyp Ref Expression
1 dom0 AA=
2 en0 AA=
3 1 2 sylbb2 AA
4 iman AA¬A¬A
5 3 4 mpbi ¬A¬A
6 brsdom AA¬A
7 5 6 mtbir ¬A