Description: The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | sdom0 | |- -. A ~< (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom | |- Rel ~< |
|
2 | 1 | brrelex1i | |- ( A ~< (/) -> A e. _V ) |
3 | 0domg | |- ( A e. _V -> (/) ~<_ A ) |
|
4 | 2 3 | syl | |- ( A ~< (/) -> (/) ~<_ A ) |
5 | domnsym | |- ( (/) ~<_ A -> -. A ~< (/) ) |
|
6 | 5 | con2i | |- ( A ~< (/) -> -. (/) ~<_ A ) |
7 | 4 6 | pm2.65i | |- -. A ~< (/) |