Metamath Proof Explorer


Theorem sdom0

Description: The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion sdom0
|- -. A ~< (/)

Proof

Step Hyp Ref Expression
1 dom0
 |-  ( A ~<_ (/) <-> A = (/) )
2 en0
 |-  ( A ~~ (/) <-> A = (/) )
3 1 2 sylbb2
 |-  ( A ~<_ (/) -> A ~~ (/) )
4 iman
 |-  ( ( A ~<_ (/) -> A ~~ (/) ) <-> -. ( A ~<_ (/) /\ -. A ~~ (/) ) )
5 3 4 mpbi
 |-  -. ( A ~<_ (/) /\ -. A ~~ (/) )
6 brsdom
 |-  ( A ~< (/) <-> ( A ~<_ (/) /\ -. A ~~ (/) ) )
7 5 6 mtbir
 |-  -. A ~< (/)