Metamath Proof Explorer


Theorem dom0

Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion dom0
|- ( A ~<_ (/) <-> A = (/) )

Proof

Step Hyp Ref Expression
1 brdomi
 |-  ( A ~<_ (/) -> E. f f : A -1-1-> (/) )
2 f1f
 |-  ( f : A -1-1-> (/) -> f : A --> (/) )
3 f00
 |-  ( f : A --> (/) <-> ( f = (/) /\ A = (/) ) )
4 3 simprbi
 |-  ( f : A --> (/) -> A = (/) )
5 2 4 syl
 |-  ( f : A -1-1-> (/) -> A = (/) )
6 5 exlimiv
 |-  ( E. f f : A -1-1-> (/) -> A = (/) )
7 1 6 syl
 |-  ( A ~<_ (/) -> A = (/) )
8 en0
 |-  ( A ~~ (/) <-> A = (/) )
9 endom
 |-  ( A ~~ (/) -> A ~<_ (/) )
10 8 9 sylbir
 |-  ( A = (/) -> A ~<_ (/) )
11 7 10 impbii
 |-  ( A ~<_ (/) <-> A = (/) )