Description: The difference of a set from a smaller set cannot be empty. (Contributed by Mario Carneiro, 5-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | sdomdif | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom | |
|
2 | 1 | brrelex1i | |
3 | ssdif0 | |
|
4 | ssdomg | |
|
5 | domnsym | |
|
6 | 4 5 | syl6 | |
7 | 3 6 | biimtrrid | |
8 | 2 7 | syl | |
9 | 8 | con2d | |
10 | 9 | pm2.43i | |
11 | 10 | neqned | |