Metamath Proof Explorer


Theorem sdomdif

Description: The difference of a set from a smaller set cannot be empty. (Contributed by Mario Carneiro, 5-Feb-2013)

Ref Expression
Assertion sdomdif ABBA

Proof

Step Hyp Ref Expression
1 relsdom Rel
2 1 brrelex1i ABAV
3 ssdif0 BABA=
4 ssdomg AVBABA
5 domnsym BA¬AB
6 4 5 syl6 AVBA¬AB
7 3 6 biimtrrid AVBA=¬AB
8 2 7 syl ABBA=¬AB
9 8 con2d ABAB¬BA=
10 9 pm2.43i AB¬BA=
11 10 neqned ABBA