Metamath Proof Explorer


Theorem sdomsdomcardi

Description: A set strictly dominates if its cardinal strictly dominates. (Contributed by Mario Carneiro, 13-Jan-2013)

Ref Expression
Assertion sdomsdomcardi AcardBAB

Proof

Step Hyp Ref Expression
1 sdom0 ¬A
2 ndmfv ¬BdomcardcardB=
3 2 breq2d ¬BdomcardAcardBA
4 1 3 mtbiri ¬Bdomcard¬AcardB
5 4 con4i AcardBBdomcard
6 cardid2 BdomcardcardBB
7 5 6 syl AcardBcardBB
8 sdomentr AcardBcardBBAB
9 7 8 mpdan AcardBAB