Metamath Proof Explorer


Theorem sepex

Description: Convert implication to equivalence within an existence statement using the Separation Scheme (Aussonderung) ax-sep . Similar to Theorem 1.3(ii) of BellMachover p. 463. (Contributed by Matthew House, 19-Sep-2025)

Ref Expression
Assertion sepex y x φ x y z x x z φ

Proof

Step Hyp Ref Expression
1 sepexlem y x φ x y w x x w φ
2 biimpr x w φ φ x w
3 2 alimi x x w φ x φ x w
4 3 eximi w x x w φ w x φ x w
5 sepexlem w x φ x w z x x z φ
6 1 4 5 3syl y x φ x y z x x z φ