Metamath Proof Explorer


Theorem sepex

Description: Convert implication to equivalence within an existence statement using the Separation Scheme (Aussonderung) ax-sep . Similar to Theorem 1.3(ii) of BellMachover p. 463. (Contributed by Matthew House, 19-Sep-2025)

Ref Expression
Assertion sepex ( ∃ 𝑦𝑥 ( 𝜑𝑥𝑦 ) → ∃ 𝑧𝑥 ( 𝑥𝑧𝜑 ) )

Proof

Step Hyp Ref Expression
1 sepexlem ( ∃ 𝑦𝑥 ( 𝜑𝑥𝑦 ) → ∃ 𝑤𝑥 ( 𝑥𝑤𝜑 ) )
2 biimpr ( ( 𝑥𝑤𝜑 ) → ( 𝜑𝑥𝑤 ) )
3 2 alimi ( ∀ 𝑥 ( 𝑥𝑤𝜑 ) → ∀ 𝑥 ( 𝜑𝑥𝑤 ) )
4 3 eximi ( ∃ 𝑤𝑥 ( 𝑥𝑤𝜑 ) → ∃ 𝑤𝑥 ( 𝜑𝑥𝑤 ) )
5 sepexlem ( ∃ 𝑤𝑥 ( 𝜑𝑥𝑤 ) → ∃ 𝑧𝑥 ( 𝑥𝑧𝜑 ) )
6 1 4 5 3syl ( ∃ 𝑦𝑥 ( 𝜑𝑥𝑦 ) → ∃ 𝑧𝑥 ( 𝑥𝑧𝜑 ) )