Metamath Proof Explorer


Theorem seqomlem0

Description: Lemma for seqom . Change bound variables. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Assertion seqomlem0 recaω,bVsucaaFbII=reccω,dVsucccFdII

Proof

Step Hyp Ref Expression
1 suceq a=csuca=succ
2 oveq1 a=caFb=cFb
3 1 2 opeq12d a=csucaaFb=succcFb
4 oveq2 b=dcFb=cFd
5 4 opeq2d b=dsucccFb=succcFd
6 3 5 cbvmpov aω,bVsucaaFb=cω,dVsucccFd
7 rdgeq1 aω,bVsucaaFb=cω,dVsucccFdrecaω,bVsucaaFbII=reccω,dVsucccFdII
8 6 7 ax-mp recaω,bVsucaaFbII=reccω,dVsucccFdII