Metamath Proof Explorer


Theorem seqomlem0

Description: Lemma for seqom . Change bound variables. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Assertion seqomlem0
|- rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) = rec ( ( c e. _om , d e. _V |-> <. suc c , ( c F d ) >. ) , <. (/) , ( _I ` I ) >. )

Proof

Step Hyp Ref Expression
1 suceq
 |-  ( a = c -> suc a = suc c )
2 oveq1
 |-  ( a = c -> ( a F b ) = ( c F b ) )
3 1 2 opeq12d
 |-  ( a = c -> <. suc a , ( a F b ) >. = <. suc c , ( c F b ) >. )
4 oveq2
 |-  ( b = d -> ( c F b ) = ( c F d ) )
5 4 opeq2d
 |-  ( b = d -> <. suc c , ( c F b ) >. = <. suc c , ( c F d ) >. )
6 3 5 cbvmpov
 |-  ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) = ( c e. _om , d e. _V |-> <. suc c , ( c F d ) >. )
7 rdgeq1
 |-  ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) = ( c e. _om , d e. _V |-> <. suc c , ( c F d ) >. ) -> rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) = rec ( ( c e. _om , d e. _V |-> <. suc c , ( c F d ) >. ) , <. (/) , ( _I ` I ) >. ) )
8 6 7 ax-mp
 |-  rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) = rec ( ( c e. _om , d e. _V |-> <. suc c , ( c F d ) >. ) , <. (/) , ( _I ` I ) >. )