| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqomlem.a |
|- Q = rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |
| 2 |
|
fveq2 |
|- ( a = (/) -> ( Q ` a ) = ( Q ` (/) ) ) |
| 3 |
|
id |
|- ( a = (/) -> a = (/) ) |
| 4 |
|
2fveq3 |
|- ( a = (/) -> ( 2nd ` ( Q ` a ) ) = ( 2nd ` ( Q ` (/) ) ) ) |
| 5 |
3 4
|
opeq12d |
|- ( a = (/) -> <. a , ( 2nd ` ( Q ` a ) ) >. = <. (/) , ( 2nd ` ( Q ` (/) ) ) >. ) |
| 6 |
2 5
|
eqeq12d |
|- ( a = (/) -> ( ( Q ` a ) = <. a , ( 2nd ` ( Q ` a ) ) >. <-> ( Q ` (/) ) = <. (/) , ( 2nd ` ( Q ` (/) ) ) >. ) ) |
| 7 |
|
fveq2 |
|- ( a = b -> ( Q ` a ) = ( Q ` b ) ) |
| 8 |
|
id |
|- ( a = b -> a = b ) |
| 9 |
|
2fveq3 |
|- ( a = b -> ( 2nd ` ( Q ` a ) ) = ( 2nd ` ( Q ` b ) ) ) |
| 10 |
8 9
|
opeq12d |
|- ( a = b -> <. a , ( 2nd ` ( Q ` a ) ) >. = <. b , ( 2nd ` ( Q ` b ) ) >. ) |
| 11 |
7 10
|
eqeq12d |
|- ( a = b -> ( ( Q ` a ) = <. a , ( 2nd ` ( Q ` a ) ) >. <-> ( Q ` b ) = <. b , ( 2nd ` ( Q ` b ) ) >. ) ) |
| 12 |
|
fveq2 |
|- ( a = suc b -> ( Q ` a ) = ( Q ` suc b ) ) |
| 13 |
|
id |
|- ( a = suc b -> a = suc b ) |
| 14 |
|
2fveq3 |
|- ( a = suc b -> ( 2nd ` ( Q ` a ) ) = ( 2nd ` ( Q ` suc b ) ) ) |
| 15 |
13 14
|
opeq12d |
|- ( a = suc b -> <. a , ( 2nd ` ( Q ` a ) ) >. = <. suc b , ( 2nd ` ( Q ` suc b ) ) >. ) |
| 16 |
12 15
|
eqeq12d |
|- ( a = suc b -> ( ( Q ` a ) = <. a , ( 2nd ` ( Q ` a ) ) >. <-> ( Q ` suc b ) = <. suc b , ( 2nd ` ( Q ` suc b ) ) >. ) ) |
| 17 |
|
fveq2 |
|- ( a = A -> ( Q ` a ) = ( Q ` A ) ) |
| 18 |
|
id |
|- ( a = A -> a = A ) |
| 19 |
|
2fveq3 |
|- ( a = A -> ( 2nd ` ( Q ` a ) ) = ( 2nd ` ( Q ` A ) ) ) |
| 20 |
18 19
|
opeq12d |
|- ( a = A -> <. a , ( 2nd ` ( Q ` a ) ) >. = <. A , ( 2nd ` ( Q ` A ) ) >. ) |
| 21 |
17 20
|
eqeq12d |
|- ( a = A -> ( ( Q ` a ) = <. a , ( 2nd ` ( Q ` a ) ) >. <-> ( Q ` A ) = <. A , ( 2nd ` ( Q ` A ) ) >. ) ) |
| 22 |
1
|
fveq1i |
|- ( Q ` (/) ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` (/) ) |
| 23 |
|
opex |
|- <. (/) , ( _I ` I ) >. e. _V |
| 24 |
23
|
rdg0 |
|- ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` (/) ) = <. (/) , ( _I ` I ) >. |
| 25 |
22 24
|
eqtri |
|- ( Q ` (/) ) = <. (/) , ( _I ` I ) >. |
| 26 |
|
0ex |
|- (/) e. _V |
| 27 |
|
fvex |
|- ( _I ` I ) e. _V |
| 28 |
26 27
|
op2nd |
|- ( 2nd ` <. (/) , ( _I ` I ) >. ) = ( _I ` I ) |
| 29 |
28
|
eqcomi |
|- ( _I ` I ) = ( 2nd ` <. (/) , ( _I ` I ) >. ) |
| 30 |
29
|
opeq2i |
|- <. (/) , ( _I ` I ) >. = <. (/) , ( 2nd ` <. (/) , ( _I ` I ) >. ) >. |
| 31 |
|
id |
|- ( ( Q ` (/) ) = <. (/) , ( _I ` I ) >. -> ( Q ` (/) ) = <. (/) , ( _I ` I ) >. ) |
| 32 |
|
fveq2 |
|- ( ( Q ` (/) ) = <. (/) , ( _I ` I ) >. -> ( 2nd ` ( Q ` (/) ) ) = ( 2nd ` <. (/) , ( _I ` I ) >. ) ) |
| 33 |
32
|
opeq2d |
|- ( ( Q ` (/) ) = <. (/) , ( _I ` I ) >. -> <. (/) , ( 2nd ` ( Q ` (/) ) ) >. = <. (/) , ( 2nd ` <. (/) , ( _I ` I ) >. ) >. ) |
| 34 |
30 31 33
|
3eqtr4a |
|- ( ( Q ` (/) ) = <. (/) , ( _I ` I ) >. -> ( Q ` (/) ) = <. (/) , ( 2nd ` ( Q ` (/) ) ) >. ) |
| 35 |
25 34
|
ax-mp |
|- ( Q ` (/) ) = <. (/) , ( 2nd ` ( Q ` (/) ) ) >. |
| 36 |
|
df-ov |
|- ( b ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ( 2nd ` ( Q ` b ) ) ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` <. b , ( 2nd ` ( Q ` b ) ) >. ) |
| 37 |
|
fvex |
|- ( 2nd ` ( Q ` b ) ) e. _V |
| 38 |
|
suceq |
|- ( i = b -> suc i = suc b ) |
| 39 |
|
oveq1 |
|- ( i = b -> ( i F v ) = ( b F v ) ) |
| 40 |
38 39
|
opeq12d |
|- ( i = b -> <. suc i , ( i F v ) >. = <. suc b , ( b F v ) >. ) |
| 41 |
|
oveq2 |
|- ( v = ( 2nd ` ( Q ` b ) ) -> ( b F v ) = ( b F ( 2nd ` ( Q ` b ) ) ) ) |
| 42 |
41
|
opeq2d |
|- ( v = ( 2nd ` ( Q ` b ) ) -> <. suc b , ( b F v ) >. = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) |
| 43 |
|
eqid |
|- ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) = ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) |
| 44 |
|
opex |
|- <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. e. _V |
| 45 |
40 42 43 44
|
ovmpo |
|- ( ( b e. _om /\ ( 2nd ` ( Q ` b ) ) e. _V ) -> ( b ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ( 2nd ` ( Q ` b ) ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) |
| 46 |
37 45
|
mpan2 |
|- ( b e. _om -> ( b ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ( 2nd ` ( Q ` b ) ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) |
| 47 |
36 46
|
eqtr3id |
|- ( b e. _om -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` <. b , ( 2nd ` ( Q ` b ) ) >. ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) |
| 48 |
|
fveqeq2 |
|- ( ( Q ` b ) = <. b , ( 2nd ` ( Q ` b ) ) >. -> ( ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. <-> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` <. b , ( 2nd ` ( Q ` b ) ) >. ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) ) |
| 49 |
47 48
|
syl5ibrcom |
|- ( b e. _om -> ( ( Q ` b ) = <. b , ( 2nd ` ( Q ` b ) ) >. -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) ) |
| 50 |
|
vex |
|- b e. _V |
| 51 |
50
|
sucex |
|- suc b e. _V |
| 52 |
|
ovex |
|- ( b F ( 2nd ` ( Q ` b ) ) ) e. _V |
| 53 |
51 52
|
op2nd |
|- ( 2nd ` <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) = ( b F ( 2nd ` ( Q ` b ) ) ) |
| 54 |
53
|
eqcomi |
|- ( b F ( 2nd ` ( Q ` b ) ) ) = ( 2nd ` <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) |
| 55 |
54
|
a1i |
|- ( b e. _om -> ( b F ( 2nd ` ( Q ` b ) ) ) = ( 2nd ` <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) ) |
| 56 |
55
|
opeq2d |
|- ( b e. _om -> <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. = <. suc b , ( 2nd ` <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) >. ) |
| 57 |
|
id |
|- ( ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) |
| 58 |
|
fveq2 |
|- ( ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. -> ( 2nd ` ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) = ( 2nd ` <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) ) |
| 59 |
58
|
opeq2d |
|- ( ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. -> <. suc b , ( 2nd ` ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) >. = <. suc b , ( 2nd ` <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) >. ) |
| 60 |
57 59
|
eqeq12d |
|- ( ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. -> ( ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( 2nd ` ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) >. <-> <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. = <. suc b , ( 2nd ` <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) >. ) ) |
| 61 |
56 60
|
syl5ibrcom |
|- ( b e. _om -> ( ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( 2nd ` ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) >. ) ) |
| 62 |
49 61
|
syld |
|- ( b e. _om -> ( ( Q ` b ) = <. b , ( 2nd ` ( Q ` b ) ) >. -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( 2nd ` ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) >. ) ) |
| 63 |
|
frsuc |
|- ( b e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` suc b ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` b ) ) ) |
| 64 |
|
peano2 |
|- ( b e. _om -> suc b e. _om ) |
| 65 |
64
|
fvresd |
|- ( b e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` suc b ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` suc b ) ) |
| 66 |
1
|
fveq1i |
|- ( Q ` suc b ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` suc b ) |
| 67 |
65 66
|
eqtr4di |
|- ( b e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` suc b ) = ( Q ` suc b ) ) |
| 68 |
|
fvres |
|- ( b e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` b ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` b ) ) |
| 69 |
1
|
fveq1i |
|- ( Q ` b ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` b ) |
| 70 |
68 69
|
eqtr4di |
|- ( b e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` b ) = ( Q ` b ) ) |
| 71 |
70
|
fveq2d |
|- ( b e. _om -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` b ) ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) |
| 72 |
63 67 71
|
3eqtr3d |
|- ( b e. _om -> ( Q ` suc b ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) |
| 73 |
72
|
fveq2d |
|- ( b e. _om -> ( 2nd ` ( Q ` suc b ) ) = ( 2nd ` ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) ) |
| 74 |
73
|
opeq2d |
|- ( b e. _om -> <. suc b , ( 2nd ` ( Q ` suc b ) ) >. = <. suc b , ( 2nd ` ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) >. ) |
| 75 |
72 74
|
eqeq12d |
|- ( b e. _om -> ( ( Q ` suc b ) = <. suc b , ( 2nd ` ( Q ` suc b ) ) >. <-> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( 2nd ` ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) >. ) ) |
| 76 |
62 75
|
sylibrd |
|- ( b e. _om -> ( ( Q ` b ) = <. b , ( 2nd ` ( Q ` b ) ) >. -> ( Q ` suc b ) = <. suc b , ( 2nd ` ( Q ` suc b ) ) >. ) ) |
| 77 |
6 11 16 21 35 76
|
finds |
|- ( A e. _om -> ( Q ` A ) = <. A , ( 2nd ` ( Q ` A ) ) >. ) |