| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqomlem.a |
|
| 2 |
|
fveq2 |
|
| 3 |
|
id |
|
| 4 |
|
2fveq3 |
|
| 5 |
3 4
|
opeq12d |
|
| 6 |
2 5
|
eqeq12d |
|
| 7 |
|
fveq2 |
|
| 8 |
|
id |
|
| 9 |
|
2fveq3 |
|
| 10 |
8 9
|
opeq12d |
|
| 11 |
7 10
|
eqeq12d |
|
| 12 |
|
fveq2 |
|
| 13 |
|
id |
|
| 14 |
|
2fveq3 |
|
| 15 |
13 14
|
opeq12d |
|
| 16 |
12 15
|
eqeq12d |
|
| 17 |
|
fveq2 |
|
| 18 |
|
id |
|
| 19 |
|
2fveq3 |
|
| 20 |
18 19
|
opeq12d |
|
| 21 |
17 20
|
eqeq12d |
|
| 22 |
1
|
fveq1i |
|
| 23 |
|
opex |
|
| 24 |
23
|
rdg0 |
|
| 25 |
22 24
|
eqtri |
|
| 26 |
|
0ex |
|
| 27 |
|
fvex |
|
| 28 |
26 27
|
op2nd |
|
| 29 |
28
|
eqcomi |
|
| 30 |
29
|
opeq2i |
|
| 31 |
|
id |
|
| 32 |
|
fveq2 |
|
| 33 |
32
|
opeq2d |
|
| 34 |
30 31 33
|
3eqtr4a |
|
| 35 |
25 34
|
ax-mp |
|
| 36 |
|
df-ov |
|
| 37 |
|
fvex |
|
| 38 |
|
suceq |
|
| 39 |
|
oveq1 |
|
| 40 |
38 39
|
opeq12d |
|
| 41 |
|
oveq2 |
|
| 42 |
41
|
opeq2d |
|
| 43 |
|
eqid |
|
| 44 |
|
opex |
|
| 45 |
40 42 43 44
|
ovmpo |
|
| 46 |
37 45
|
mpan2 |
|
| 47 |
36 46
|
eqtr3id |
|
| 48 |
|
fveqeq2 |
|
| 49 |
47 48
|
syl5ibrcom |
|
| 50 |
|
vex |
|
| 51 |
50
|
sucex |
|
| 52 |
|
ovex |
|
| 53 |
51 52
|
op2nd |
|
| 54 |
53
|
eqcomi |
|
| 55 |
54
|
a1i |
|
| 56 |
55
|
opeq2d |
|
| 57 |
|
id |
|
| 58 |
|
fveq2 |
|
| 59 |
58
|
opeq2d |
|
| 60 |
57 59
|
eqeq12d |
|
| 61 |
56 60
|
syl5ibrcom |
|
| 62 |
49 61
|
syld |
|
| 63 |
|
frsuc |
|
| 64 |
|
peano2 |
|
| 65 |
64
|
fvresd |
|
| 66 |
1
|
fveq1i |
|
| 67 |
65 66
|
eqtr4di |
|
| 68 |
|
fvres |
|
| 69 |
1
|
fveq1i |
|
| 70 |
68 69
|
eqtr4di |
|
| 71 |
70
|
fveq2d |
|
| 72 |
63 67 71
|
3eqtr3d |
|
| 73 |
72
|
fveq2d |
|
| 74 |
73
|
opeq2d |
|
| 75 |
72 74
|
eqeq12d |
|
| 76 |
62 75
|
sylibrd |
|
| 77 |
6 11 16 21 35 76
|
finds |
|