Description: Lemma for seqom . (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by Mario Carneiro, 23-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | seqomlem.a | |
|
Assertion | seqomlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqomlem.a | |
|
2 | frfnom | |
|
3 | 1 | reseq1i | |
4 | 3 | fneq1i | |
5 | 2 4 | mpbir | |
6 | fvres | |
|
7 | 1 | seqomlem1 | |
8 | 6 7 | eqtrd | |
9 | fvex | |
|
10 | opelxpi | |
|
11 | 9 10 | mpan2 | |
12 | 8 11 | eqeltrd | |
13 | 12 | rgen | |
14 | ffnfv | |
|
15 | 5 13 14 | mpbir2an | |
16 | frn | |
|
17 | 15 16 | ax-mp | |
18 | df-br | |
|
19 | fvelrnb | |
|
20 | 5 19 | ax-mp | |
21 | fvres | |
|
22 | 21 | eqeq1d | |
23 | 22 | rexbiia | |
24 | 18 20 23 | 3bitri | |
25 | 1 | seqomlem1 | |
26 | 25 | adantl | |
27 | 26 | eqeq1d | |
28 | vex | |
|
29 | fvex | |
|
30 | 28 29 | opth1 | |
31 | 27 30 | syl6bi | |
32 | fveqeq2 | |
|
33 | 32 | biimpd | |
34 | 31 33 | syli | |
35 | fveq2 | |
|
36 | vex | |
|
37 | vex | |
|
38 | 36 37 | op2nd | |
39 | 35 38 | eqtr2di | |
40 | 34 39 | syl6 | |
41 | 40 | rexlimdva | |
42 | 1 | seqomlem1 | |
43 | fveqeq2 | |
|
44 | 43 | rspcev | |
45 | 42 44 | mpdan | |
46 | opeq2 | |
|
47 | 46 | eqeq2d | |
48 | 47 | rexbidv | |
49 | 45 48 | syl5ibrcom | |
50 | 41 49 | impbid | |
51 | 24 50 | bitrid | |
52 | 51 | alrimiv | |
53 | fvex | |
|
54 | eqeq2 | |
|
55 | 54 | bibi2d | |
56 | 55 | albidv | |
57 | 53 56 | spcev | |
58 | 52 57 | syl | |
59 | eu6 | |
|
60 | 58 59 | sylibr | |
61 | 60 | rgen | |
62 | dff3 | |
|
63 | 17 61 62 | mpbir2an | |
64 | df-ima | |
|
65 | 64 | feq1i | |
66 | 63 65 | mpbir | |
67 | dffn2 | |
|
68 | 66 67 | mpbir | |