Metamath Proof Explorer


Theorem seqomlem2

Description: Lemma for seqom . (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by Mario Carneiro, 23-Jun-2015)

Ref Expression
Hypothesis seqomlem.a Q=reciω,vVsuciiFvII
Assertion seqomlem2 QωFnω

Proof

Step Hyp Ref Expression
1 seqomlem.a Q=reciω,vVsuciiFvII
2 frfnom reciω,vVsuciiFvIIωFnω
3 1 reseq1i Qω=reciω,vVsuciiFvIIω
4 3 fneq1i QωFnωreciω,vVsuciiFvIIωFnω
5 2 4 mpbir QωFnω
6 fvres bωQωb=Qb
7 1 seqomlem1 bωQb=b2ndQb
8 6 7 eqtrd bωQωb=b2ndQb
9 fvex 2ndQbV
10 opelxpi bω2ndQbVb2ndQbω×V
11 9 10 mpan2 bωb2ndQbω×V
12 8 11 eqeltrd bωQωbω×V
13 12 rgen bωQωbω×V
14 ffnfv Qω:ωω×VQωFnωbωQωbω×V
15 5 13 14 mpbir2an Qω:ωω×V
16 frn Qω:ωω×VranQωω×V
17 15 16 ax-mp ranQωω×V
18 df-br aranQωbabranQω
19 fvelrnb QωFnωabranQωcωQωc=ab
20 5 19 ax-mp abranQωcωQωc=ab
21 fvres cωQωc=Qc
22 21 eqeq1d cωQωc=abQc=ab
23 22 rexbiia cωQωc=abcωQc=ab
24 18 20 23 3bitri aranQωbcωQc=ab
25 1 seqomlem1 cωQc=c2ndQc
26 25 adantl aωcωQc=c2ndQc
27 26 eqeq1d aωcωQc=abc2ndQc=ab
28 vex cV
29 fvex 2ndQcV
30 28 29 opth1 c2ndQc=abc=a
31 27 30 syl6bi aωcωQc=abc=a
32 fveqeq2 c=aQc=abQa=ab
33 32 biimpd c=aQc=abQa=ab
34 31 33 syli aωcωQc=abQa=ab
35 fveq2 Qa=ab2ndQa=2ndab
36 vex aV
37 vex bV
38 36 37 op2nd 2ndab=b
39 35 38 eqtr2di Qa=abb=2ndQa
40 34 39 syl6 aωcωQc=abb=2ndQa
41 40 rexlimdva aωcωQc=abb=2ndQa
42 1 seqomlem1 aωQa=a2ndQa
43 fveqeq2 c=aQc=a2ndQaQa=a2ndQa
44 43 rspcev aωQa=a2ndQacωQc=a2ndQa
45 42 44 mpdan aωcωQc=a2ndQa
46 opeq2 b=2ndQaab=a2ndQa
47 46 eqeq2d b=2ndQaQc=abQc=a2ndQa
48 47 rexbidv b=2ndQacωQc=abcωQc=a2ndQa
49 45 48 syl5ibrcom aωb=2ndQacωQc=ab
50 41 49 impbid aωcωQc=abb=2ndQa
51 24 50 bitrid aωaranQωbb=2ndQa
52 51 alrimiv aωbaranQωbb=2ndQa
53 fvex 2ndQaV
54 eqeq2 c=2ndQab=cb=2ndQa
55 54 bibi2d c=2ndQaaranQωbb=caranQωbb=2ndQa
56 55 albidv c=2ndQabaranQωbb=cbaranQωbb=2ndQa
57 53 56 spcev baranQωbb=2ndQacbaranQωbb=c
58 52 57 syl aωcbaranQωbb=c
59 eu6 ∃!baranQωbcbaranQωbb=c
60 58 59 sylibr aω∃!baranQωb
61 60 rgen aω∃!baranQωb
62 dff3 ranQω:ωVranQωω×Vaω∃!baranQωb
63 17 61 62 mpbir2an ranQω:ωV
64 df-ima Qω=ranQω
65 64 feq1i Qω:ωVranQω:ωV
66 63 65 mpbir Qω:ωV
67 dffn2 QωFnωQω:ωV
68 66 67 mpbir QωFnω