Metamath Proof Explorer


Theorem seqp1d

Description: Value of the sequence builder function at a successor, deduction form. (Contributed by Mario Carneiro, 30-Apr-2014) (Revised by AV, 3-May-2024)

Ref Expression
Hypotheses seqp1d.1 Z=M
seqp1d.2 φNZ
seqp1d.3 K=N+1
seqp1d.4 φseqM+˙FN=A
seqp1d.5 φFK=B
Assertion seqp1d φseqM+˙FK=A+˙B

Proof

Step Hyp Ref Expression
1 seqp1d.1 Z=M
2 seqp1d.2 φNZ
3 seqp1d.3 K=N+1
4 seqp1d.4 φseqM+˙FN=A
5 seqp1d.5 φFK=B
6 3 fveq2i seqM+˙FK=seqM+˙FN+1
7 6 a1i φseqM+˙FK=seqM+˙FN+1
8 2 1 eleqtrdi φNM
9 seqp1 NMseqM+˙FN+1=seqM+˙FN+˙FN+1
10 8 9 syl φseqM+˙FN+1=seqM+˙FN+˙FN+1
11 3 fveq2i FK=FN+1
12 11 5 eqtr3id φFN+1=B
13 4 12 oveq12d φseqM+˙FN+˙FN+1=A+˙B
14 7 10 13 3eqtrd φseqM+˙FK=A+˙B