Metamath Proof Explorer


Theorem setc2othin

Description: The category ( SetCat2o ) is thin. A special case of setcthin . (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Assertion setc2othin Could not format assertion : No typesetting found for |- ( SetCat ` 2o ) e. ThinCat with typecode |-

Proof

Step Hyp Ref Expression
1 eqidd SetCat2𝑜=SetCat2𝑜
2 2oex 2𝑜V
3 2 a1i 2𝑜V
4 elpri xx=x=
5 0ex V
6 sneq y=y=
7 6 eqeq2d y=x=yx=
8 5 7 spcev x=yx=y
9 8 orim2i x=x=x=yx=y
10 mo0sn *zzxx=yx=y
11 10 biimpri x=yx=y*zzx
12 4 9 11 3syl x*zzx
13 df2o2 2𝑜=
14 12 13 eleq2s x2𝑜*zzx
15 14 rgen x2𝑜*zzx
16 15 a1i x2𝑜*zzx
17 1 3 16 setcthin Could not format ( T. -> ( SetCat ` 2o ) e. ThinCat ) : No typesetting found for |- ( T. -> ( SetCat ` 2o ) e. ThinCat ) with typecode |-
18 17 mptru Could not format ( SetCat ` 2o ) e. ThinCat : No typesetting found for |- ( SetCat ` 2o ) e. ThinCat with typecode |-