Metamath Proof Explorer


Theorem thincsect

Description: In a thin category, one morphism is a section of another iff they are pointing towards each other. (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses thincsect.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincsect.b B=BaseC
thincsect.x φXB
thincsect.y φYB
thincsect.s S=SectC
thincsect.h H=HomC
Assertion thincsect φFXSYGFXHYGYHX

Proof

Step Hyp Ref Expression
1 thincsect.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincsect.b B=BaseC
3 thincsect.x φXB
4 thincsect.y φYB
5 thincsect.s S=SectC
6 thincsect.h H=HomC
7 eqid compC=compC
8 eqid IdC=IdC
9 1 thinccd φCCat
10 2 6 7 8 5 9 3 4 issect φFXSYGFXHYGYHXGXYcompCXF=IdCX
11 df-3an FXHYGYHXGXYcompCXF=IdCXFXHYGYHXGXYcompCXF=IdCX
12 10 11 bitrdi φFXSYGFXHYGYHXGXYcompCXF=IdCX
13 1 adantr Could not format ( ( ph /\ ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( ph /\ ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) -> C e. ThinCat ) with typecode |-
14 3 adantr φFXHYGYHXXB
15 9 adantr φFXHYGYHXCCat
16 4 adantr φFXHYGYHXYB
17 simprl φFXHYGYHXFXHY
18 simprr φFXHYGYHXGYHX
19 2 6 7 15 14 16 14 17 18 catcocl φFXHYGYHXGXYcompCXFXHX
20 13 2 6 14 8 19 thincid φFXHYGYHXGXYcompCXF=IdCX
21 12 20 mpbiran3d φFXSYGFXHYGYHX