Metamath Proof Explorer


Theorem setcid

Description: The identity arrow in the category of sets is the identity function. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses setccat.c C=SetCatU
setcid.o 1˙=IdC
setcid.u φUV
setcid.x φXU
Assertion setcid φ1˙X=IX

Proof

Step Hyp Ref Expression
1 setccat.c C=SetCatU
2 setcid.o 1˙=IdC
3 setcid.u φUV
4 setcid.x φXU
5 1 setccatid UVCCatIdC=xUIx
6 3 5 syl φCCatIdC=xUIx
7 6 simprd φIdC=xUIx
8 2 7 eqtrid φ1˙=xUIx
9 simpr φx=Xx=X
10 9 reseq2d φx=XIx=IX
11 4 resiexd φIXV
12 8 10 4 11 fvmptd φ1˙X=IX