Metamath Proof Explorer


Theorem setsmsbas

Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015) (Proof shortened by AV, 12-Nov-2024)

Ref Expression
Hypotheses setsms.x φX=BaseM
setsms.d φD=distMX×X
setsms.k φK=MsSetTopSetndxMetOpenD
Assertion setsmsbas φX=BaseK

Proof

Step Hyp Ref Expression
1 setsms.x φX=BaseM
2 setsms.d φD=distMX×X
3 setsms.k φK=MsSetTopSetndxMetOpenD
4 baseid Base=SlotBasendx
5 tsetndxnbasendx TopSetndxBasendx
6 5 necomi BasendxTopSetndx
7 4 6 setsnid BaseM=BaseMsSetTopSetndxMetOpenD
8 3 fveq2d φBaseK=BaseMsSetTopSetndxMetOpenD
9 7 1 8 3eqtr4a φX=BaseK