Metamath Proof Explorer


Theorem setsmsbas

Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015) (Proof shortened by AV, 12-Nov-2024)

Ref Expression
Hypotheses setsms.x φ X = Base M
setsms.d φ D = dist M X × X
setsms.k φ K = M sSet TopSet ndx MetOpen D
Assertion setsmsbas φ X = Base K

Proof

Step Hyp Ref Expression
1 setsms.x φ X = Base M
2 setsms.d φ D = dist M X × X
3 setsms.k φ K = M sSet TopSet ndx MetOpen D
4 baseid Base = Slot Base ndx
5 tsetndxnbasendx TopSet ndx Base ndx
6 5 necomi Base ndx TopSet ndx
7 4 6 setsnid Base M = Base M sSet TopSet ndx MetOpen D
8 3 fveq2d φ Base K = Base M sSet TopSet ndx MetOpen D
9 7 1 8 3eqtr4a φ X = Base K