Metamath Proof Explorer


Theorem setsmsbasOLD

Description: Obsolete proof of setsmsbas as of 12-Nov-2024. The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses setsms.x φX=BaseM
setsms.d φD=distMX×X
setsms.k φK=MsSetTopSetndxMetOpenD
Assertion setsmsbasOLD φX=BaseK

Proof

Step Hyp Ref Expression
1 setsms.x φX=BaseM
2 setsms.d φD=distMX×X
3 setsms.k φK=MsSetTopSetndxMetOpenD
4 baseid Base=SlotBasendx
5 1re 1
6 1lt9 1<9
7 5 6 ltneii 19
8 basendx Basendx=1
9 tsetndx TopSetndx=9
10 8 9 neeq12i BasendxTopSetndx19
11 7 10 mpbir BasendxTopSetndx
12 4 11 setsnid BaseM=BaseMsSetTopSetndxMetOpenD
13 3 fveq2d φBaseK=BaseMsSetTopSetndxMetOpenD
14 12 1 13 3eqtr4a φX=BaseK