Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Algebra
Signum in an ordered monoid
sgnsf
Next ⟩
The Archimedean property for generic ordered algebraic structures
Metamath Proof Explorer
Ascii
Unicode
Theorem
sgnsf
Description:
The sign function.
(Contributed by
Thierry Arnoux
, 9-Sep-2018)
Ref
Expression
Hypotheses
sgnsval.b
⊢
B
=
Base
R
sgnsval.0
⊢
0
˙
=
0
R
sgnsval.l
⊢
<
˙
=
<
R
sgnsval.s
⊢
S
=
sgn
s
⁡
R
Assertion
sgnsf
⊢
R
∈
V
→
S
:
B
⟶
−
1
0
1
Proof
Step
Hyp
Ref
Expression
1
sgnsval.b
⊢
B
=
Base
R
2
sgnsval.0
⊢
0
˙
=
0
R
3
sgnsval.l
⊢
<
˙
=
<
R
4
sgnsval.s
⊢
S
=
sgn
s
⁡
R
5
1
2
3
4
sgnsv
⊢
R
∈
V
→
S
=
x
∈
B
⟼
if
x
=
0
˙
0
if
0
˙
<
˙
x
1
−
1
6
c0ex
⊢
0
∈
V
7
6
tpid2
⊢
0
∈
−
1
0
1
8
1ex
⊢
1
∈
V
9
8
tpid3
⊢
1
∈
−
1
0
1
10
negex
⊢
−
1
∈
V
11
10
tpid1
⊢
−
1
∈
−
1
0
1
12
9
11
ifcli
⊢
if
0
˙
<
˙
x
1
−
1
∈
−
1
0
1
13
7
12
ifcli
⊢
if
x
=
0
˙
0
if
0
˙
<
˙
x
1
−
1
∈
−
1
0
1
14
13
a1i
⊢
R
∈
V
∧
x
∈
B
→
if
x
=
0
˙
0
if
0
˙
<
˙
x
1
−
1
∈
−
1
0
1
15
5
14
fmpt3d
⊢
R
∈
V
→
S
:
B
⟶
−
1
0
1