Step |
Hyp |
Ref |
Expression |
1 |
|
sgnsval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
sgnsval.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
sgnsval.l |
⊢ < = ( lt ‘ 𝑅 ) |
4 |
|
sgnsval.s |
⊢ 𝑆 = ( sgns ‘ 𝑅 ) |
5 |
1 2 3 4
|
sgnsv |
⊢ ( 𝑅 ∈ 𝑉 → 𝑆 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) ) ) |
6 |
|
c0ex |
⊢ 0 ∈ V |
7 |
6
|
tpid2 |
⊢ 0 ∈ { - 1 , 0 , 1 } |
8 |
|
1ex |
⊢ 1 ∈ V |
9 |
8
|
tpid3 |
⊢ 1 ∈ { - 1 , 0 , 1 } |
10 |
|
negex |
⊢ - 1 ∈ V |
11 |
10
|
tpid1 |
⊢ - 1 ∈ { - 1 , 0 , 1 } |
12 |
9 11
|
ifcli |
⊢ if ( 0 < 𝑥 , 1 , - 1 ) ∈ { - 1 , 0 , 1 } |
13 |
7 12
|
ifcli |
⊢ if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) ∈ { - 1 , 0 , 1 } |
14 |
13
|
a1i |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) ∈ { - 1 , 0 , 1 } ) |
15 |
5 14
|
fmpt3d |
⊢ ( 𝑅 ∈ 𝑉 → 𝑆 : 𝐵 ⟶ { - 1 , 0 , 1 } ) |