Metamath Proof Explorer


Theorem sgnsv

Description: The sign mapping. (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypotheses sgnsval.b 𝐵 = ( Base ‘ 𝑅 )
sgnsval.0 0 = ( 0g𝑅 )
sgnsval.l < = ( lt ‘ 𝑅 )
sgnsval.s 𝑆 = ( sgns𝑅 )
Assertion sgnsv ( 𝑅𝑉𝑆 = ( 𝑥𝐵 ↦ if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) ) )

Proof

Step Hyp Ref Expression
1 sgnsval.b 𝐵 = ( Base ‘ 𝑅 )
2 sgnsval.0 0 = ( 0g𝑅 )
3 sgnsval.l < = ( lt ‘ 𝑅 )
4 sgnsval.s 𝑆 = ( sgns𝑅 )
5 elex ( 𝑅𝑉𝑅 ∈ V )
6 fveq2 ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) )
7 6 1 eqtr4di ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 )
8 fveq2 ( 𝑟 = 𝑅 → ( 0g𝑟 ) = ( 0g𝑅 ) )
9 8 2 eqtr4di ( 𝑟 = 𝑅 → ( 0g𝑟 ) = 0 )
10 9 adantr ( ( 𝑟 = 𝑅𝑥 ∈ ( Base ‘ 𝑟 ) ) → ( 0g𝑟 ) = 0 )
11 10 eqeq2d ( ( 𝑟 = 𝑅𝑥 ∈ ( Base ‘ 𝑟 ) ) → ( 𝑥 = ( 0g𝑟 ) ↔ 𝑥 = 0 ) )
12 fveq2 ( 𝑟 = 𝑅 → ( lt ‘ 𝑟 ) = ( lt ‘ 𝑅 ) )
13 12 3 eqtr4di ( 𝑟 = 𝑅 → ( lt ‘ 𝑟 ) = < )
14 13 adantr ( ( 𝑟 = 𝑅𝑥 ∈ ( Base ‘ 𝑟 ) ) → ( lt ‘ 𝑟 ) = < )
15 eqidd ( ( 𝑟 = 𝑅𝑥 ∈ ( Base ‘ 𝑟 ) ) → 𝑥 = 𝑥 )
16 10 14 15 breq123d ( ( 𝑟 = 𝑅𝑥 ∈ ( Base ‘ 𝑟 ) ) → ( ( 0g𝑟 ) ( lt ‘ 𝑟 ) 𝑥0 < 𝑥 ) )
17 16 ifbid ( ( 𝑟 = 𝑅𝑥 ∈ ( Base ‘ 𝑟 ) ) → if ( ( 0g𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) = if ( 0 < 𝑥 , 1 , - 1 ) )
18 11 17 ifbieq2d ( ( 𝑟 = 𝑅𝑥 ∈ ( Base ‘ 𝑟 ) ) → if ( 𝑥 = ( 0g𝑟 ) , 0 , if ( ( 0g𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) = if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) )
19 7 18 mpteq12dva ( 𝑟 = 𝑅 → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ if ( 𝑥 = ( 0g𝑟 ) , 0 , if ( ( 0g𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) ) = ( 𝑥𝐵 ↦ if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) ) )
20 df-sgns sgns = ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ if ( 𝑥 = ( 0g𝑟 ) , 0 , if ( ( 0g𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) ) )
21 19 20 1 mptfvmpt ( 𝑅 ∈ V → ( sgns𝑅 ) = ( 𝑥𝐵 ↦ if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) ) )
22 5 21 syl ( 𝑅𝑉 → ( sgns𝑅 ) = ( 𝑥𝐵 ↦ if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) ) )
23 4 22 eqtrid ( 𝑅𝑉𝑆 = ( 𝑥𝐵 ↦ if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) ) )