Step |
Hyp |
Ref |
Expression |
1 |
|
sgnsval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
sgnsval.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
sgnsval.l |
⊢ < = ( lt ‘ 𝑅 ) |
4 |
|
sgnsval.s |
⊢ 𝑆 = ( sgns ‘ 𝑅 ) |
5 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
6 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
7 |
6 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
8 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
9 |
8 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
10 |
9
|
adantr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑥 ∈ ( Base ‘ 𝑟 ) ) → ( 0g ‘ 𝑟 ) = 0 ) |
11 |
10
|
eqeq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑥 ∈ ( Base ‘ 𝑟 ) ) → ( 𝑥 = ( 0g ‘ 𝑟 ) ↔ 𝑥 = 0 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( lt ‘ 𝑟 ) = ( lt ‘ 𝑅 ) ) |
13 |
12 3
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( lt ‘ 𝑟 ) = < ) |
14 |
13
|
adantr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑥 ∈ ( Base ‘ 𝑟 ) ) → ( lt ‘ 𝑟 ) = < ) |
15 |
|
eqidd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑥 ∈ ( Base ‘ 𝑟 ) ) → 𝑥 = 𝑥 ) |
16 |
10 14 15
|
breq123d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑥 ∈ ( Base ‘ 𝑟 ) ) → ( ( 0g ‘ 𝑟 ) ( lt ‘ 𝑟 ) 𝑥 ↔ 0 < 𝑥 ) ) |
17 |
16
|
ifbid |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑥 ∈ ( Base ‘ 𝑟 ) ) → if ( ( 0g ‘ 𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) = if ( 0 < 𝑥 , 1 , - 1 ) ) |
18 |
11 17
|
ifbieq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑥 ∈ ( Base ‘ 𝑟 ) ) → if ( 𝑥 = ( 0g ‘ 𝑟 ) , 0 , if ( ( 0g ‘ 𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) = if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) ) |
19 |
7 18
|
mpteq12dva |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ if ( 𝑥 = ( 0g ‘ 𝑟 ) , 0 , if ( ( 0g ‘ 𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) ) ) |
20 |
|
df-sgns |
⊢ sgns = ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ if ( 𝑥 = ( 0g ‘ 𝑟 ) , 0 , if ( ( 0g ‘ 𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) ) ) |
21 |
19 20 1
|
mptfvmpt |
⊢ ( 𝑅 ∈ V → ( sgns ‘ 𝑅 ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) ) ) |
22 |
5 21
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → ( sgns ‘ 𝑅 ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) ) ) |
23 |
4 22
|
syl5eq |
⊢ ( 𝑅 ∈ 𝑉 → 𝑆 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) ) ) |