Step |
Hyp |
Ref |
Expression |
1 |
|
sgnsval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
sgnsval.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
sgnsval.l |
⊢ < = ( lt ‘ 𝑅 ) |
4 |
|
sgnsval.s |
⊢ 𝑆 = ( sgns ‘ 𝑅 ) |
5 |
1 2 3 4
|
sgnsv |
⊢ ( 𝑅 ∈ 𝑉 → 𝑆 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑆 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) ) ) |
7 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 0 ↔ 𝑋 = 0 ) ) |
8 |
|
breq2 |
⊢ ( 𝑥 = 𝑋 → ( 0 < 𝑥 ↔ 0 < 𝑋 ) ) |
9 |
8
|
ifbid |
⊢ ( 𝑥 = 𝑋 → if ( 0 < 𝑥 , 1 , - 1 ) = if ( 0 < 𝑋 , 1 , - 1 ) ) |
10 |
7 9
|
ifbieq2d |
⊢ ( 𝑥 = 𝑋 → if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) = if ( 𝑋 = 0 , 0 , if ( 0 < 𝑋 , 1 , - 1 ) ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) → if ( 𝑥 = 0 , 0 , if ( 0 < 𝑥 , 1 , - 1 ) ) = if ( 𝑋 = 0 , 0 , if ( 0 < 𝑋 , 1 , - 1 ) ) ) |
12 |
|
simpr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
13 |
|
c0ex |
⊢ 0 ∈ V |
14 |
13
|
a1i |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑋 = 0 ) → 0 ∈ V ) |
15 |
|
1ex |
⊢ 1 ∈ V |
16 |
15
|
a1i |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑋 = 0 ) ∧ 0 < 𝑋 ) → 1 ∈ V ) |
17 |
|
negex |
⊢ - 1 ∈ V |
18 |
17
|
a1i |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑋 = 0 ) ∧ ¬ 0 < 𝑋 ) → - 1 ∈ V ) |
19 |
16 18
|
ifclda |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑋 = 0 ) → if ( 0 < 𝑋 , 1 , - 1 ) ∈ V ) |
20 |
14 19
|
ifclda |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → if ( 𝑋 = 0 , 0 , if ( 0 < 𝑋 , 1 , - 1 ) ) ∈ V ) |
21 |
6 11 12 20
|
fvmptd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑆 ‘ 𝑋 ) = if ( 𝑋 = 0 , 0 , if ( 0 < 𝑋 , 1 , - 1 ) ) ) |