| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sgnsval.b |
|- B = ( Base ` R ) |
| 2 |
|
sgnsval.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
sgnsval.l |
|- .< = ( lt ` R ) |
| 4 |
|
sgnsval.s |
|- S = ( sgns ` R ) |
| 5 |
1 2 3 4
|
sgnsv |
|- ( R e. V -> S = ( x e. B |-> if ( x = .0. , 0 , if ( .0. .< x , 1 , -u 1 ) ) ) ) |
| 6 |
5
|
adantr |
|- ( ( R e. V /\ X e. B ) -> S = ( x e. B |-> if ( x = .0. , 0 , if ( .0. .< x , 1 , -u 1 ) ) ) ) |
| 7 |
|
eqeq1 |
|- ( x = X -> ( x = .0. <-> X = .0. ) ) |
| 8 |
|
breq2 |
|- ( x = X -> ( .0. .< x <-> .0. .< X ) ) |
| 9 |
8
|
ifbid |
|- ( x = X -> if ( .0. .< x , 1 , -u 1 ) = if ( .0. .< X , 1 , -u 1 ) ) |
| 10 |
7 9
|
ifbieq2d |
|- ( x = X -> if ( x = .0. , 0 , if ( .0. .< x , 1 , -u 1 ) ) = if ( X = .0. , 0 , if ( .0. .< X , 1 , -u 1 ) ) ) |
| 11 |
10
|
adantl |
|- ( ( ( R e. V /\ X e. B ) /\ x = X ) -> if ( x = .0. , 0 , if ( .0. .< x , 1 , -u 1 ) ) = if ( X = .0. , 0 , if ( .0. .< X , 1 , -u 1 ) ) ) |
| 12 |
|
simpr |
|- ( ( R e. V /\ X e. B ) -> X e. B ) |
| 13 |
|
c0ex |
|- 0 e. _V |
| 14 |
13
|
a1i |
|- ( ( ( R e. V /\ X e. B ) /\ X = .0. ) -> 0 e. _V ) |
| 15 |
|
1ex |
|- 1 e. _V |
| 16 |
15
|
a1i |
|- ( ( ( ( R e. V /\ X e. B ) /\ -. X = .0. ) /\ .0. .< X ) -> 1 e. _V ) |
| 17 |
|
negex |
|- -u 1 e. _V |
| 18 |
17
|
a1i |
|- ( ( ( ( R e. V /\ X e. B ) /\ -. X = .0. ) /\ -. .0. .< X ) -> -u 1 e. _V ) |
| 19 |
16 18
|
ifclda |
|- ( ( ( R e. V /\ X e. B ) /\ -. X = .0. ) -> if ( .0. .< X , 1 , -u 1 ) e. _V ) |
| 20 |
14 19
|
ifclda |
|- ( ( R e. V /\ X e. B ) -> if ( X = .0. , 0 , if ( .0. .< X , 1 , -u 1 ) ) e. _V ) |
| 21 |
6 11 12 20
|
fvmptd |
|- ( ( R e. V /\ X e. B ) -> ( S ` X ) = if ( X = .0. , 0 , if ( .0. .< X , 1 , -u 1 ) ) ) |