Step |
Hyp |
Ref |
Expression |
1 |
|
sgnsval.b |
|- B = ( Base ` R ) |
2 |
|
sgnsval.0 |
|- .0. = ( 0g ` R ) |
3 |
|
sgnsval.l |
|- .< = ( lt ` R ) |
4 |
|
sgnsval.s |
|- S = ( sgns ` R ) |
5 |
|
elex |
|- ( R e. V -> R e. _V ) |
6 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
7 |
6 1
|
eqtr4di |
|- ( r = R -> ( Base ` r ) = B ) |
8 |
|
fveq2 |
|- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
9 |
8 2
|
eqtr4di |
|- ( r = R -> ( 0g ` r ) = .0. ) |
10 |
9
|
adantr |
|- ( ( r = R /\ x e. ( Base ` r ) ) -> ( 0g ` r ) = .0. ) |
11 |
10
|
eqeq2d |
|- ( ( r = R /\ x e. ( Base ` r ) ) -> ( x = ( 0g ` r ) <-> x = .0. ) ) |
12 |
|
fveq2 |
|- ( r = R -> ( lt ` r ) = ( lt ` R ) ) |
13 |
12 3
|
eqtr4di |
|- ( r = R -> ( lt ` r ) = .< ) |
14 |
13
|
adantr |
|- ( ( r = R /\ x e. ( Base ` r ) ) -> ( lt ` r ) = .< ) |
15 |
|
eqidd |
|- ( ( r = R /\ x e. ( Base ` r ) ) -> x = x ) |
16 |
10 14 15
|
breq123d |
|- ( ( r = R /\ x e. ( Base ` r ) ) -> ( ( 0g ` r ) ( lt ` r ) x <-> .0. .< x ) ) |
17 |
16
|
ifbid |
|- ( ( r = R /\ x e. ( Base ` r ) ) -> if ( ( 0g ` r ) ( lt ` r ) x , 1 , -u 1 ) = if ( .0. .< x , 1 , -u 1 ) ) |
18 |
11 17
|
ifbieq2d |
|- ( ( r = R /\ x e. ( Base ` r ) ) -> if ( x = ( 0g ` r ) , 0 , if ( ( 0g ` r ) ( lt ` r ) x , 1 , -u 1 ) ) = if ( x = .0. , 0 , if ( .0. .< x , 1 , -u 1 ) ) ) |
19 |
7 18
|
mpteq12dva |
|- ( r = R -> ( x e. ( Base ` r ) |-> if ( x = ( 0g ` r ) , 0 , if ( ( 0g ` r ) ( lt ` r ) x , 1 , -u 1 ) ) ) = ( x e. B |-> if ( x = .0. , 0 , if ( .0. .< x , 1 , -u 1 ) ) ) ) |
20 |
|
df-sgns |
|- sgns = ( r e. _V |-> ( x e. ( Base ` r ) |-> if ( x = ( 0g ` r ) , 0 , if ( ( 0g ` r ) ( lt ` r ) x , 1 , -u 1 ) ) ) ) |
21 |
19 20 1
|
mptfvmpt |
|- ( R e. _V -> ( sgns ` R ) = ( x e. B |-> if ( x = .0. , 0 , if ( .0. .< x , 1 , -u 1 ) ) ) ) |
22 |
5 21
|
syl |
|- ( R e. V -> ( sgns ` R ) = ( x e. B |-> if ( x = .0. , 0 , if ( .0. .< x , 1 , -u 1 ) ) ) ) |
23 |
4 22
|
eqtrid |
|- ( R e. V -> S = ( x e. B |-> if ( x = .0. , 0 , if ( .0. .< x , 1 , -u 1 ) ) ) ) |