Step |
Hyp |
Ref |
Expression |
0 |
|
csgns |
|- sgns |
1 |
|
vr |
|- r |
2 |
|
cvv |
|- _V |
3 |
|
vx |
|- x |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- r |
6 |
5 4
|
cfv |
|- ( Base ` r ) |
7 |
3
|
cv |
|- x |
8 |
|
c0g |
|- 0g |
9 |
5 8
|
cfv |
|- ( 0g ` r ) |
10 |
7 9
|
wceq |
|- x = ( 0g ` r ) |
11 |
|
cc0 |
|- 0 |
12 |
|
cplt |
|- lt |
13 |
5 12
|
cfv |
|- ( lt ` r ) |
14 |
9 7 13
|
wbr |
|- ( 0g ` r ) ( lt ` r ) x |
15 |
|
c1 |
|- 1 |
16 |
15
|
cneg |
|- -u 1 |
17 |
14 15 16
|
cif |
|- if ( ( 0g ` r ) ( lt ` r ) x , 1 , -u 1 ) |
18 |
10 11 17
|
cif |
|- if ( x = ( 0g ` r ) , 0 , if ( ( 0g ` r ) ( lt ` r ) x , 1 , -u 1 ) ) |
19 |
3 6 18
|
cmpt |
|- ( x e. ( Base ` r ) |-> if ( x = ( 0g ` r ) , 0 , if ( ( 0g ` r ) ( lt ` r ) x , 1 , -u 1 ) ) ) |
20 |
1 2 19
|
cmpt |
|- ( r e. _V |-> ( x e. ( Base ` r ) |-> if ( x = ( 0g ` r ) , 0 , if ( ( 0g ` r ) ( lt ` r ) x , 1 , -u 1 ) ) ) ) |
21 |
0 20
|
wceq |
|- sgns = ( r e. _V |-> ( x e. ( Base ` r ) |-> if ( x = ( 0g ` r ) , 0 , if ( ( 0g ` r ) ( lt ` r ) x , 1 , -u 1 ) ) ) ) |