| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csgns |
|- sgns |
| 1 |
|
vr |
|- r |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vx |
|- x |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- r |
| 6 |
5 4
|
cfv |
|- ( Base ` r ) |
| 7 |
3
|
cv |
|- x |
| 8 |
|
c0g |
|- 0g |
| 9 |
5 8
|
cfv |
|- ( 0g ` r ) |
| 10 |
7 9
|
wceq |
|- x = ( 0g ` r ) |
| 11 |
|
cc0 |
|- 0 |
| 12 |
|
cplt |
|- lt |
| 13 |
5 12
|
cfv |
|- ( lt ` r ) |
| 14 |
9 7 13
|
wbr |
|- ( 0g ` r ) ( lt ` r ) x |
| 15 |
|
c1 |
|- 1 |
| 16 |
15
|
cneg |
|- -u 1 |
| 17 |
14 15 16
|
cif |
|- if ( ( 0g ` r ) ( lt ` r ) x , 1 , -u 1 ) |
| 18 |
10 11 17
|
cif |
|- if ( x = ( 0g ` r ) , 0 , if ( ( 0g ` r ) ( lt ` r ) x , 1 , -u 1 ) ) |
| 19 |
3 6 18
|
cmpt |
|- ( x e. ( Base ` r ) |-> if ( x = ( 0g ` r ) , 0 , if ( ( 0g ` r ) ( lt ` r ) x , 1 , -u 1 ) ) ) |
| 20 |
1 2 19
|
cmpt |
|- ( r e. _V |-> ( x e. ( Base ` r ) |-> if ( x = ( 0g ` r ) , 0 , if ( ( 0g ` r ) ( lt ` r ) x , 1 , -u 1 ) ) ) ) |
| 21 |
0 20
|
wceq |
|- sgns = ( r e. _V |-> ( x e. ( Base ` r ) |-> if ( x = ( 0g ` r ) , 0 , if ( ( 0g ` r ) ( lt ` r ) x , 1 , -u 1 ) ) ) ) |