| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csgns |
⊢ sgns |
| 1 |
|
vr |
⊢ 𝑟 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑟 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
| 7 |
3
|
cv |
⊢ 𝑥 |
| 8 |
|
c0g |
⊢ 0g |
| 9 |
5 8
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
| 10 |
7 9
|
wceq |
⊢ 𝑥 = ( 0g ‘ 𝑟 ) |
| 11 |
|
cc0 |
⊢ 0 |
| 12 |
|
cplt |
⊢ lt |
| 13 |
5 12
|
cfv |
⊢ ( lt ‘ 𝑟 ) |
| 14 |
9 7 13
|
wbr |
⊢ ( 0g ‘ 𝑟 ) ( lt ‘ 𝑟 ) 𝑥 |
| 15 |
|
c1 |
⊢ 1 |
| 16 |
15
|
cneg |
⊢ - 1 |
| 17 |
14 15 16
|
cif |
⊢ if ( ( 0g ‘ 𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) |
| 18 |
10 11 17
|
cif |
⊢ if ( 𝑥 = ( 0g ‘ 𝑟 ) , 0 , if ( ( 0g ‘ 𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) |
| 19 |
3 6 18
|
cmpt |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ if ( 𝑥 = ( 0g ‘ 𝑟 ) , 0 , if ( ( 0g ‘ 𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) ) |
| 20 |
1 2 19
|
cmpt |
⊢ ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ if ( 𝑥 = ( 0g ‘ 𝑟 ) , 0 , if ( ( 0g ‘ 𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) ) ) |
| 21 |
0 20
|
wceq |
⊢ sgns = ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ if ( 𝑥 = ( 0g ‘ 𝑟 ) , 0 , if ( ( 0g ‘ 𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) ) ) |