Step |
Hyp |
Ref |
Expression |
0 |
|
csgns |
⊢ sgns |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
cvv |
⊢ V |
3 |
|
vx |
⊢ 𝑥 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑟 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
7 |
3
|
cv |
⊢ 𝑥 |
8 |
|
c0g |
⊢ 0g |
9 |
5 8
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
10 |
7 9
|
wceq |
⊢ 𝑥 = ( 0g ‘ 𝑟 ) |
11 |
|
cc0 |
⊢ 0 |
12 |
|
cplt |
⊢ lt |
13 |
5 12
|
cfv |
⊢ ( lt ‘ 𝑟 ) |
14 |
9 7 13
|
wbr |
⊢ ( 0g ‘ 𝑟 ) ( lt ‘ 𝑟 ) 𝑥 |
15 |
|
c1 |
⊢ 1 |
16 |
15
|
cneg |
⊢ - 1 |
17 |
14 15 16
|
cif |
⊢ if ( ( 0g ‘ 𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) |
18 |
10 11 17
|
cif |
⊢ if ( 𝑥 = ( 0g ‘ 𝑟 ) , 0 , if ( ( 0g ‘ 𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) |
19 |
3 6 18
|
cmpt |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ if ( 𝑥 = ( 0g ‘ 𝑟 ) , 0 , if ( ( 0g ‘ 𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) ) |
20 |
1 2 19
|
cmpt |
⊢ ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ if ( 𝑥 = ( 0g ‘ 𝑟 ) , 0 , if ( ( 0g ‘ 𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) ) ) |
21 |
0 20
|
wceq |
⊢ sgns = ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ if ( 𝑥 = ( 0g ‘ 𝑟 ) , 0 , if ( ( 0g ‘ 𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) ) ) |