Metamath Proof Explorer


Definition df-sgns

Description: Signum function for a structure. See also df-sgn for the version for extended reals. (Contributed by Thierry Arnoux, 10-Sep-2018)

Ref Expression
Assertion df-sgns sgns = ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ if ( 𝑥 = ( 0g𝑟 ) , 0 , if ( ( 0g𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csgns sgns
1 vr 𝑟
2 cvv V
3 vx 𝑥
4 cbs Base
5 1 cv 𝑟
6 5 4 cfv ( Base ‘ 𝑟 )
7 3 cv 𝑥
8 c0g 0g
9 5 8 cfv ( 0g𝑟 )
10 7 9 wceq 𝑥 = ( 0g𝑟 )
11 cc0 0
12 cplt lt
13 5 12 cfv ( lt ‘ 𝑟 )
14 9 7 13 wbr ( 0g𝑟 ) ( lt ‘ 𝑟 ) 𝑥
15 c1 1
16 15 cneg - 1
17 14 15 16 cif if ( ( 0g𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 )
18 10 11 17 cif if ( 𝑥 = ( 0g𝑟 ) , 0 , if ( ( 0g𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) )
19 3 6 18 cmpt ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ if ( 𝑥 = ( 0g𝑟 ) , 0 , if ( ( 0g𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) )
20 1 2 19 cmpt ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ if ( 𝑥 = ( 0g𝑟 ) , 0 , if ( ( 0g𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) ) )
21 0 20 wceq sgns = ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ if ( 𝑥 = ( 0g𝑟 ) , 0 , if ( ( 0g𝑟 ) ( lt ‘ 𝑟 ) 𝑥 , 1 , - 1 ) ) ) )