| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sgnsval.b |
|- B = ( Base ` R ) |
| 2 |
|
sgnsval.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
sgnsval.l |
|- .< = ( lt ` R ) |
| 4 |
|
sgnsval.s |
|- S = ( sgns ` R ) |
| 5 |
1 2 3 4
|
sgnsv |
|- ( R e. V -> S = ( x e. B |-> if ( x = .0. , 0 , if ( .0. .< x , 1 , -u 1 ) ) ) ) |
| 6 |
|
c0ex |
|- 0 e. _V |
| 7 |
6
|
tpid2 |
|- 0 e. { -u 1 , 0 , 1 } |
| 8 |
|
1ex |
|- 1 e. _V |
| 9 |
8
|
tpid3 |
|- 1 e. { -u 1 , 0 , 1 } |
| 10 |
|
negex |
|- -u 1 e. _V |
| 11 |
10
|
tpid1 |
|- -u 1 e. { -u 1 , 0 , 1 } |
| 12 |
9 11
|
ifcli |
|- if ( .0. .< x , 1 , -u 1 ) e. { -u 1 , 0 , 1 } |
| 13 |
7 12
|
ifcli |
|- if ( x = .0. , 0 , if ( .0. .< x , 1 , -u 1 ) ) e. { -u 1 , 0 , 1 } |
| 14 |
13
|
a1i |
|- ( ( R e. V /\ x e. B ) -> if ( x = .0. , 0 , if ( .0. .< x , 1 , -u 1 ) ) e. { -u 1 , 0 , 1 } ) |
| 15 |
5 14
|
fmpt3d |
|- ( R e. V -> S : B --> { -u 1 , 0 , 1 } ) |