Step |
Hyp |
Ref |
Expression |
1 |
|
sgnsval.b |
|- B = ( Base ` R ) |
2 |
|
sgnsval.0 |
|- .0. = ( 0g ` R ) |
3 |
|
sgnsval.l |
|- .< = ( lt ` R ) |
4 |
|
sgnsval.s |
|- S = ( sgns ` R ) |
5 |
1 2 3 4
|
sgnsv |
|- ( R e. V -> S = ( x e. B |-> if ( x = .0. , 0 , if ( .0. .< x , 1 , -u 1 ) ) ) ) |
6 |
|
c0ex |
|- 0 e. _V |
7 |
6
|
tpid2 |
|- 0 e. { -u 1 , 0 , 1 } |
8 |
|
1ex |
|- 1 e. _V |
9 |
8
|
tpid3 |
|- 1 e. { -u 1 , 0 , 1 } |
10 |
|
negex |
|- -u 1 e. _V |
11 |
10
|
tpid1 |
|- -u 1 e. { -u 1 , 0 , 1 } |
12 |
9 11
|
ifcli |
|- if ( .0. .< x , 1 , -u 1 ) e. { -u 1 , 0 , 1 } |
13 |
7 12
|
ifcli |
|- if ( x = .0. , 0 , if ( .0. .< x , 1 , -u 1 ) ) e. { -u 1 , 0 , 1 } |
14 |
13
|
a1i |
|- ( ( R e. V /\ x e. B ) -> if ( x = .0. , 0 , if ( .0. .< x , 1 , -u 1 ) ) e. { -u 1 , 0 , 1 } ) |
15 |
5 14
|
fmpt3d |
|- ( R e. V -> S : B --> { -u 1 , 0 , 1 } ) |