Metamath Proof Explorer


Theorem sgrpcl

Description: Closure of the operation of a semigroup. (Contributed by AV, 15-Feb-2025)

Ref Expression
Hypotheses sgrpass.b B=BaseG
sgrpass.o No typesetting found for |- .o. = ( +g ` G ) with typecode |-
Assertion sgrpcl Could not format assertion : No typesetting found for |- ( ( G e. Smgrp /\ X e. B /\ Y e. B ) -> ( X .o. Y ) e. B ) with typecode |-

Proof

Step Hyp Ref Expression
1 sgrpass.b B=BaseG
2 sgrpass.o Could not format .o. = ( +g ` G ) : No typesetting found for |- .o. = ( +g ` G ) with typecode |-
3 sgrpmgm Could not format ( G e. Smgrp -> G e. Mgm ) : No typesetting found for |- ( G e. Smgrp -> G e. Mgm ) with typecode |-
4 1 2 mgmcl Could not format ( ( G e. Mgm /\ X e. B /\ Y e. B ) -> ( X .o. Y ) e. B ) : No typesetting found for |- ( ( G e. Mgm /\ X e. B /\ Y e. B ) -> ( X .o. Y ) e. B ) with typecode |-
5 3 4 syl3an1 Could not format ( ( G e. Smgrp /\ X e. B /\ Y e. B ) -> ( X .o. Y ) e. B ) : No typesetting found for |- ( ( G e. Smgrp /\ X e. B /\ Y e. B ) -> ( X .o. Y ) e. B ) with typecode |-