Description: Closure of the operation of a semigroup. (Contributed by AV, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sgrpass.b | |- B = ( Base ` G )  | 
					|
| sgrpass.o | |- .o. = ( +g ` G )  | 
					||
| Assertion | sgrpcl | |- ( ( G e. Smgrp /\ X e. B /\ Y e. B ) -> ( X .o. Y ) e. B )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sgrpass.b | |- B = ( Base ` G )  | 
						|
| 2 | sgrpass.o | |- .o. = ( +g ` G )  | 
						|
| 3 | sgrpmgm | |- ( G e. Smgrp -> G e. Mgm )  | 
						|
| 4 | 1 2 | mgmcl | |- ( ( G e. Mgm /\ X e. B /\ Y e. B ) -> ( X .o. Y ) e. B )  | 
						
| 5 | 3 4 | syl3an1 | |- ( ( G e. Smgrp /\ X e. B /\ Y e. B ) -> ( X .o. Y ) e. B )  |