Metamath Proof Explorer


Theorem shincl

Description: Closure of intersection of two subspaces. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion shincl ASBSABS

Proof

Step Hyp Ref Expression
1 ineq1 A=ifASAAB=ifASAB
2 1 eleq1d A=ifASAABSifASABS
3 ineq2 B=ifBSBifASAB=ifASAifBSB
4 3 eleq1d B=ifBSBifASABSifASAifBSBS
5 helsh S
6 5 elimel ifASAS
7 5 elimel ifBSBS
8 6 7 shincli ifASAifBSBS
9 2 4 8 dedth2h ASBSABS