Metamath Proof Explorer


Theorem shincli

Description: Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 AS
shincl.2 BS
Assertion shincli ABS

Proof

Step Hyp Ref Expression
1 shincl.1 AS
2 shincl.2 BS
3 1 elexi AV
4 2 elexi BV
5 3 4 intpr AB=AB
6 1 2 pm3.2i ASBS
7 3 4 prss ASBSABS
8 6 7 mpbi ABS
9 3 prnz AB
10 8 9 pm3.2i ABSAB
11 10 shintcli ABS
12 5 11 eqeltrri ABS