Description: Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
| shincl.2 | ⊢ 𝐵 ∈ Sℋ | ||
| Assertion | shincli | ⊢ ( 𝐴 ∩ 𝐵 ) ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | shincl.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | 1 | elexi | ⊢ 𝐴 ∈ V |
| 4 | 2 | elexi | ⊢ 𝐵 ∈ V |
| 5 | 3 4 | intpr | ⊢ ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) |
| 6 | 1 2 | pm3.2i | ⊢ ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) |
| 7 | 3 4 | prss | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ↔ { 𝐴 , 𝐵 } ⊆ Sℋ ) |
| 8 | 6 7 | mpbi | ⊢ { 𝐴 , 𝐵 } ⊆ Sℋ |
| 9 | 3 | prnz | ⊢ { 𝐴 , 𝐵 } ≠ ∅ |
| 10 | 8 9 | pm3.2i | ⊢ ( { 𝐴 , 𝐵 } ⊆ Sℋ ∧ { 𝐴 , 𝐵 } ≠ ∅ ) |
| 11 | 10 | shintcli | ⊢ ∩ { 𝐴 , 𝐵 } ∈ Sℋ |
| 12 | 5 11 | eqeltrri | ⊢ ( 𝐴 ∩ 𝐵 ) ∈ Sℋ |