| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shintcl.1 |
⊢ ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) |
| 2 |
1
|
simpri |
⊢ 𝐴 ≠ ∅ |
| 3 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) |
| 4 |
|
intss1 |
⊢ ( 𝑧 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑧 ) |
| 5 |
1
|
simpli |
⊢ 𝐴 ⊆ Sℋ |
| 6 |
5
|
sseli |
⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ Sℋ ) |
| 7 |
|
shss |
⊢ ( 𝑧 ∈ Sℋ → 𝑧 ⊆ ℋ ) |
| 8 |
6 7
|
syl |
⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ⊆ ℋ ) |
| 9 |
4 8
|
sstrd |
⊢ ( 𝑧 ∈ 𝐴 → ∩ 𝐴 ⊆ ℋ ) |
| 10 |
9
|
exlimiv |
⊢ ( ∃ 𝑧 𝑧 ∈ 𝐴 → ∩ 𝐴 ⊆ ℋ ) |
| 11 |
3 10
|
sylbi |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ℋ ) |
| 12 |
2 11
|
ax-mp |
⊢ ∩ 𝐴 ⊆ ℋ |
| 13 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
| 14 |
13
|
elexi |
⊢ 0ℎ ∈ V |
| 15 |
14
|
elint2 |
⊢ ( 0ℎ ∈ ∩ 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 0ℎ ∈ 𝑧 ) |
| 16 |
|
sh0 |
⊢ ( 𝑧 ∈ Sℋ → 0ℎ ∈ 𝑧 ) |
| 17 |
6 16
|
syl |
⊢ ( 𝑧 ∈ 𝐴 → 0ℎ ∈ 𝑧 ) |
| 18 |
15 17
|
mprgbir |
⊢ 0ℎ ∈ ∩ 𝐴 |
| 19 |
12 18
|
pm3.2i |
⊢ ( ∩ 𝐴 ⊆ ℋ ∧ 0ℎ ∈ ∩ 𝐴 ) |
| 20 |
|
elinti |
⊢ ( 𝑥 ∈ ∩ 𝐴 → ( 𝑧 ∈ 𝐴 → 𝑥 ∈ 𝑧 ) ) |
| 21 |
20
|
com12 |
⊢ ( 𝑧 ∈ 𝐴 → ( 𝑥 ∈ ∩ 𝐴 → 𝑥 ∈ 𝑧 ) ) |
| 22 |
|
elinti |
⊢ ( 𝑦 ∈ ∩ 𝐴 → ( 𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧 ) ) |
| 23 |
22
|
com12 |
⊢ ( 𝑧 ∈ 𝐴 → ( 𝑦 ∈ ∩ 𝐴 → 𝑦 ∈ 𝑧 ) ) |
| 24 |
|
shaddcl |
⊢ ( ( 𝑧 ∈ Sℋ ∧ 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑧 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝑧 ) |
| 25 |
6 24
|
syl3an1 |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑧 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝑧 ) |
| 26 |
25
|
3expib |
⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑧 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝑧 ) ) |
| 27 |
21 23 26
|
syl2and |
⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝑥 ∈ ∩ 𝐴 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝑧 ) ) |
| 28 |
27
|
com12 |
⊢ ( ( 𝑥 ∈ ∩ 𝐴 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑧 ∈ 𝐴 → ( 𝑥 +ℎ 𝑦 ) ∈ 𝑧 ) ) |
| 29 |
28
|
ralrimiv |
⊢ ( ( 𝑥 ∈ ∩ 𝐴 ∧ 𝑦 ∈ ∩ 𝐴 ) → ∀ 𝑧 ∈ 𝐴 ( 𝑥 +ℎ 𝑦 ) ∈ 𝑧 ) |
| 30 |
|
ovex |
⊢ ( 𝑥 +ℎ 𝑦 ) ∈ V |
| 31 |
30
|
elint2 |
⊢ ( ( 𝑥 +ℎ 𝑦 ) ∈ ∩ 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑥 +ℎ 𝑦 ) ∈ 𝑧 ) |
| 32 |
29 31
|
sylibr |
⊢ ( ( 𝑥 ∈ ∩ 𝐴 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑥 +ℎ 𝑦 ) ∈ ∩ 𝐴 ) |
| 33 |
32
|
rgen2 |
⊢ ∀ 𝑥 ∈ ∩ 𝐴 ∀ 𝑦 ∈ ∩ 𝐴 ( 𝑥 +ℎ 𝑦 ) ∈ ∩ 𝐴 |
| 34 |
|
shmulcl |
⊢ ( ( 𝑧 ∈ Sℋ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝑧 ) → ( 𝑥 ·ℎ 𝑦 ) ∈ 𝑧 ) |
| 35 |
6 34
|
syl3an1 |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝑧 ) → ( 𝑥 ·ℎ 𝑦 ) ∈ 𝑧 ) |
| 36 |
35
|
3expib |
⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝑧 ) → ( 𝑥 ·ℎ 𝑦 ) ∈ 𝑧 ) ) |
| 37 |
23 36
|
sylan2d |
⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑥 ·ℎ 𝑦 ) ∈ 𝑧 ) ) |
| 38 |
37
|
com12 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑧 ∈ 𝐴 → ( 𝑥 ·ℎ 𝑦 ) ∈ 𝑧 ) ) |
| 39 |
38
|
ralrimiv |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ∩ 𝐴 ) → ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝑧 ) |
| 40 |
|
ovex |
⊢ ( 𝑥 ·ℎ 𝑦 ) ∈ V |
| 41 |
40
|
elint2 |
⊢ ( ( 𝑥 ·ℎ 𝑦 ) ∈ ∩ 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝑧 ) |
| 42 |
39 41
|
sylibr |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ∩ 𝐴 ) |
| 43 |
42
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ∩ 𝐴 ( 𝑥 ·ℎ 𝑦 ) ∈ ∩ 𝐴 |
| 44 |
33 43
|
pm3.2i |
⊢ ( ∀ 𝑥 ∈ ∩ 𝐴 ∀ 𝑦 ∈ ∩ 𝐴 ( 𝑥 +ℎ 𝑦 ) ∈ ∩ 𝐴 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ∩ 𝐴 ( 𝑥 ·ℎ 𝑦 ) ∈ ∩ 𝐴 ) |
| 45 |
|
issh2 |
⊢ ( ∩ 𝐴 ∈ Sℋ ↔ ( ( ∩ 𝐴 ⊆ ℋ ∧ 0ℎ ∈ ∩ 𝐴 ) ∧ ( ∀ 𝑥 ∈ ∩ 𝐴 ∀ 𝑦 ∈ ∩ 𝐴 ( 𝑥 +ℎ 𝑦 ) ∈ ∩ 𝐴 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ∩ 𝐴 ( 𝑥 ·ℎ 𝑦 ) ∈ ∩ 𝐴 ) ) ) |
| 46 |
19 44 45
|
mpbir2an |
⊢ ∩ 𝐴 ∈ Sℋ |