Metamath Proof Explorer


Theorem shlubi

Description: Hilbert lattice join is the least upper bound (among Hilbert lattice elements) of two subspaces. (Contributed by NM, 11-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shlub.1 AS
shlub.2 BS
shlub.3 CC
Assertion shlubi ACBCABC

Proof

Step Hyp Ref Expression
1 shlub.1 AS
2 shlub.2 BS
3 shlub.3 CC
4 shlub ASBSCCACBCABC
5 1 2 3 4 mp3an ACBCABC