Metamath Proof Explorer


Theorem simprrd

Description: Deduction form of simprr , eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis simprrd.1 φψχθ
Assertion simprrd φθ

Proof

Step Hyp Ref Expression
1 simprrd.1 φψχθ
2 1 simprd φχθ
3 2 simprd φθ