Metamath Proof Explorer


Theorem slotstnscsi

Description: The slots Scalar , .s and .i are different from the slot TopSet . Formerly part of sralem and proofs using it. (Contributed by AV, 29-Oct-2024)

Ref Expression
Assertion slotstnscsi TopSet ndx Scalar ndx TopSet ndx ndx TopSet ndx 𝑖 ndx

Proof

Step Hyp Ref Expression
1 5re 5
2 5lt9 5 < 9
3 1 2 gtneii 9 5
4 tsetndx TopSet ndx = 9
5 scandx Scalar ndx = 5
6 4 5 neeq12i TopSet ndx Scalar ndx 9 5
7 3 6 mpbir TopSet ndx Scalar ndx
8 6re 6
9 6lt9 6 < 9
10 8 9 gtneii 9 6
11 vscandx ndx = 6
12 4 11 neeq12i TopSet ndx ndx 9 6
13 10 12 mpbir TopSet ndx ndx
14 8re 8
15 8lt9 8 < 9
16 14 15 gtneii 9 8
17 ipndx 𝑖 ndx = 8
18 4 17 neeq12i TopSet ndx 𝑖 ndx 9 8
19 16 18 mpbir TopSet ndx 𝑖 ndx
20 7 13 19 3pm3.2i TopSet ndx Scalar ndx TopSet ndx ndx TopSet ndx 𝑖 ndx