Metamath Proof Explorer


Theorem sltmuldiv2wd

Description: Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltdivmulwd.1 φANo
sltdivmulwd.2 φBNo
sltdivmulwd.3 φCNo
sltdivmulwd.4 φ0s<sC
sltdivmulwd.5 φxNoCsx=1s
Assertion sltmuldiv2wd φCsA<sBA<sB/suC

Proof

Step Hyp Ref Expression
1 sltdivmulwd.1 φANo
2 sltdivmulwd.2 φBNo
3 sltdivmulwd.3 φCNo
4 sltdivmulwd.4 φ0s<sC
5 sltdivmulwd.5 φxNoCsx=1s
6 1 3 mulscomd φAsC=CsA
7 6 breq1d φAsC<sBCsA<sB
8 1 2 3 4 5 sltmuldivwd φAsC<sBA<sB/suC
9 7 8 bitr3d φCsA<sBA<sB/suC