Metamath Proof Explorer


Theorem smgrpassOLD

Description: Obsolete version of sgrpass as of 3-Feb-2020. A semigroup is associative. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis smgrpassOLD.1 X=domdomG
Assertion smgrpassOLD GSemiGrpxXyXzXxGyGz=xGyGz

Proof

Step Hyp Ref Expression
1 smgrpassOLD.1 X=domdomG
2 1 issmgrpOLD GSemiGrpGSemiGrpG:X×XXxXyXzXxGyGz=xGyGz
3 simpr G:X×XXxXyXzXxGyGz=xGyGzxXyXzXxGyGz=xGyGz
4 2 3 syl6bi GSemiGrpGSemiGrpxXyXzXxGyGz=xGyGz
5 4 pm2.43i GSemiGrpxXyXzXxGyGz=xGyGz