Metamath Proof Explorer


Theorem smndex2hbas

Description: The halving functions H are endofunctions on NN0 . (Contributed by AV, 18-Feb-2024)

Ref Expression
Hypotheses smndex2dbas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex2dbas.b B=BaseM
smndex2dbas.0 0˙=0M
smndex2dbas.d D=x02x
smndex2hbas.n N0
smndex2hbas.h H=x0if2xx2N
Assertion smndex2hbas HB

Proof

Step Hyp Ref Expression
1 smndex2dbas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex2dbas.b B=BaseM
3 smndex2dbas.0 0˙=0M
4 smndex2dbas.d D=x02x
5 smndex2hbas.n N0
6 smndex2hbas.h H=x0if2xx2N
7 nn0ehalf x02xx20
8 5 a1i x0¬2xN0
9 7 8 ifclda x0if2xx2N0
10 6 9 fmpti H:00
11 nn0ex 0V
12 11 mptex x0if2xx2NV
13 6 12 eqeltri HV
14 1 2 elefmndbas2 HVHBH:00
15 13 14 ax-mp HBH:00
16 10 15 mpbir HB