Metamath Proof Explorer


Theorem sn-rereccld

Description: Closure law for reciprocal. (Contributed by SN, 25-Nov-2025)

Ref Expression
Hypotheses sn-rereccld.a φ A
sn-rereccld.z φ A 0
Assertion sn-rereccld Could not format assertion : No typesetting found for |- ( ph -> ( 1 /R A ) e. RR ) with typecode |-

Proof

Step Hyp Ref Expression
1 sn-rereccld.a φ A
2 sn-rereccld.z φ A 0
3 1red φ 1
4 3 1 2 sn-redivcld Could not format ( ph -> ( 1 /R A ) e. RR ) : No typesetting found for |- ( ph -> ( 1 /R A ) e. RR ) with typecode |-