Metamath Proof Explorer


Theorem sn-redivcld

Description: Closure law for real division. (Contributed by SN, 25-Nov-2025)

Ref Expression
Hypotheses redivvald.a φ A
redivvald.b φ B
redivvald.z φ B 0
Assertion sn-redivcld Could not format assertion : No typesetting found for |- ( ph -> ( A /R B ) e. RR ) with typecode |-

Proof

Step Hyp Ref Expression
1 redivvald.a φ A
2 redivvald.b φ B
3 redivvald.z φ B 0
4 1 2 3 redivvald Could not format ( ph -> ( A /R B ) = ( iota_ x e. RR ( B x. x ) = A ) ) : No typesetting found for |- ( ph -> ( A /R B ) = ( iota_ x e. RR ( B x. x ) = A ) ) with typecode |-
5 1 2 3 rediveud φ ∃! x B x = A
6 riotacl ∃! x B x = A ι x | B x = A
7 5 6 syl φ ι x | B x = A
8 4 7 eqeltrd Could not format ( ph -> ( A /R B ) e. RR ) : No typesetting found for |- ( ph -> ( A /R B ) e. RR ) with typecode |-