Metamath Proof Explorer


Theorem sn-tz6.12-2

Description: tz6.12-2 without ax-10 , ax-11 , ax-12 . Improves 118 theorems. (Contributed by SN, 27-May-2025)

Ref Expression
Assertion sn-tz6.12-2 ¬ ∃! x A F x F A =

Proof

Step Hyp Ref Expression
1 breq2 x = y A F x A F y
2 breq2 x = z A F x A F z
3 1 2 euabsn2w ∃! x A F x y x | A F x = y
4 3 notbii ¬ ∃! x A F x ¬ y x | A F x = y
5 df-fv F A = ι x | A F x
6 iotanul2 ¬ y x | A F x = y ι x | A F x =
7 5 6 eqtrid ¬ y x | A F x = y F A =
8 4 7 sylbi ¬ ∃! x A F x F A =