Metamath Proof Explorer


Theorem iotanul2

Description: Version of iotanul using df-iota instead of dfiota2 . (Contributed by SN, 6-Nov-2024)

Ref Expression
Assertion iotanul2 ¬yx|φ=yιx|φ=

Proof

Step Hyp Ref Expression
1 df-iota ιx|φ=w|x|φ=w
2 n0 w|x|φ=wvvw|x|φ=w
3 eluni vw|x|φ=wyvyyw|x|φ=w
4 vex yV
5 sneq w=yw=y
6 5 eqeq2d w=yx|φ=wx|φ=y
7 4 6 elab yw|x|φ=wx|φ=y
8 7 biimpi yw|x|φ=wx|φ=y
9 8 adantl vyyw|x|φ=wx|φ=y
10 9 eximi yvyyw|x|φ=wyx|φ=y
11 3 10 sylbi vw|x|φ=wyx|φ=y
12 11 exlimiv vvw|x|φ=wyx|φ=y
13 2 12 sylbi w|x|φ=wyx|φ=y
14 13 necon1bi ¬yx|φ=yw|x|φ=w=
15 1 14 eqtrid ¬yx|φ=yιx|φ=